Search results for "Volcanic hazards"
showing 10 items of 19 documents
Alteration-Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean)
2021
International audience; Volcanoes are unstable structures that deform laterally and frequently experience mass wasting events. Hydrothermal alteration is often invoked as a mechanism that contributes significantly to volcano instability. We present a study that combines laboratory experiments, geophysical data, and large-scale numerical modeling to better understand the influence of alteration on volcano stability, using La Soufrière de Guadeloupe (Eastern Caribbean) as a case study. Laboratory experiments on variably altered (advanced argillic alteration) blocks show that uniaxial compressive strength, Young's modulus, and cohesion decrease as a function of increasing alteration, but that …
Volcanic Lakes in Africa: The VOLADA_Africa 2.0 Database, and Implications for Volcanic Hazard
2021
Volcanic lakes pose specific hazards inherent to the presence of water: phreatic and phreatomagmatic eruptions, lahars, limnic gas bursts and dispersion of brines in the hydrological network. Here we introduce the updated, interactive and open-access database for African volcanic lakes, country by country. The previous database VOLADA (VOlcanic LAke DAta Base, Rouwet et al., Journal of Volcanology and Geothermal Research, 2014, 272, 78–97) reported 96 volcanic lakes for Africa. This number is now revised and established at 220, converting VOLADA_Africa 2.0 in the most comprehensive resource for African volcanic lakes: 81 in Uganda, 37 in Kenya, 33 in Cameroon, 28 in Madagascar, 19 in Ethiop…
Rates of carbon dioxide plume degassing from Mount Etna volcano,
2006
We report here on the real-time measurement of CO2 and SO2 concentrations in the near-vent volcanic gas plume of Mount Etna, acquired by the use of a field portable gas analyzer during a series of periodic field surveys on the volcano's summit. During the investigated period (September 2004 to September 2005), the plume CO2/SO2 ratio ranged from 1.9 to 10.8, with contrasting composition for Northeast and Voragine crater plumes. Scaling the above CO2/SO2 ratios by UV spectroscopy determined SO2 emission rates, we estimate CO2 emission rates from the volcano in the range 0.9-67.5 kt d-1 (average, 9 kt d-1). About 2 kt of CO2 were emitted daily on average during quiescent passive degassing, wh…
Resurgent uplift at large calderas and relationship to caldera-forming faults and the magma reservoir: New insights from the Neapolitan Yellow Tuff c…
2021
Abstract Resurgence uplift is the rising of the caldera floor, mainly due to pressure or volume changes in the magma reservoir. Identifying resurgence structures and understanding their relationship to the magmatic reservoir is challenging. We investigate the resurgence structures of the Neapolitan Yellow Tuff caldera (Italy) by integrating bathymetric data, high-resolution seismic profiles and Differential Synthetic-Aperture Radar Interferometry data. Our results show that the resurgent area is manifested as 1) a central dome constituted by two main blocks bounded by NNE-SSW trending faults, 2) an apical graben developed on top of the most uplifted block, 3) a peripheral zone including sev…
Fast tracking of wind speed with a differential absorption LiDAR system: First results of an experimental campaign at Stromboli volcano
2017
Carbon dioxide ( CO 2 ) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO 2 concentrations and wind speeds, using the same sample o…
Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): Implications for the magmatic supply during degassing unrest
2014
Abstract Since its last magmatic eruption in 1530 AD, La Soufriere andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gas plume emissions from its summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gas concentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine real-time measurements of volcanic H2S concentrations and plume parameters with the composition of the hot (108.5 °C) fumarolic fluid at …
Early detection of volcanic hazard by lidar measurement of carbon dioxide
2016
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidars has been undertaken at ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. A differential absorption lid…
Geochemistry of gases and waters discharged by the mud volcanoes at Paternò, Mt. Etna (Italy)
1996
Approximately 20 km south of Mt. Etna craters, at the contact between volcanic and sedimentary formations, three mud volcanoes discharge CO2-rich gases and Na–Cl brines. The compositions of gas and liquid phases indicate that they are fed by a hydrothermal system for which temperatures of 100–150 °C were estimated by means of both gas and solute geothermometry. The hydrothermal system may be associated with CO2-rich groundwaters over a large area extending from the central part of Etna to the mud volcanoes. Numerous data on the He, CH4, CO2 composition of the gases of the three manifestations, sampled over the past 5 years, indicate clearly that variations are due to separation processes of…
Magmatic gas percolation through the old lava dome of El Misti volcano
2017
International audience; The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock int…
Resurgent uplift at large calderas and relationship to caldera-forming faults and the magma reservoir: new insights from the Neapolitan Yellow Tuff c…
2021
<p>Resurgence uplift is the rising of the caldera floor, mainly due to pressure or volume changes in the magma reservoir. Identifying resurgence structures and understanding their relationship to the magmatic reservoir is challenging. We investigate the resurgence structures of the Neapolitan Yellow Tuff (NYT) caldera (Italy) by integrating bathymetric data, high-resolution seismic profiles and Differential Synthetic-Aperture Radar Interferometry data. Our results show that the resurgent area is manifested as 1) a central dome constituted by two main blocks bounded by NNE-SSW trending faults, 2) an apical graben developed on top of the most uplifted block, 3) a peripheral zone…